Main boarb và CPU

13/03/2012 0 9958

Main board

CPU

CPU viết tắt của chữ Central Processing Unit (tiếng Anh), tạm dịch là đơn vị xử lí trung tâm. CPU có thể được xem như não bộ, một trong những phần tử cốt lõi nhất của máy vi tính. Nhiệm vụ chính của CPU là xử lý các chương trình vi tính và dữ kiện. CPU có nhiều kiểu dáng khác nhau. Ở hình thức đơn giản nhất, CPU là một con chip với vài chục chân. Phức tạp hơn, CPU được ráp sẵn trong các bộ mạch với hàng trăm con chip khác. CPU là một mạch xử lý dữ liệu theo chương trình được thiết lập trước. Nó là một mạch tích hợp phức tạp gồm hàng triệu transitor trên một bảng mạch nhỏ. Bộ xử lý trung tâm bao gồm Bộ điều khiển và Bộ làm tính. Bộ vi xử lý Intel 80486DX2 trong PGA bằng đồ gốm Bộ điều khiển (CU-Control Unit) Là các vi xử lí có nhiệm vụ thông dịch các lệnh của chương trình và điều khiển hoạt động xử lí,được điều tiết chính xác bởi xung nhịp đồng hồ hệ thống. Mạch xung nhịp đồng hồ hệ thống dùng để đồng bộ các thao tác xử lí trong và ngoài CPU theo các khoảng thời gian không đổi.Khoảng thời gian chờ giữa hai xung gọi là chu kỳ xung nhịp.Tốc độ theo đó xung nhịp hệ thống tạo ra các xung tín hiệu chuẩn thời gian gọi là tốc độ xung nhịp - tốc độ đồng hồ tính bằng triệu đơn vị mỗi giây-Mhz. Thanh ghi là phần tử nhớ tạm trong bộ vi xử lý dùng lưu dữ liệu và địa chỉ nhớ trong máy khi đang thực hiện tác vụ với . Bộ số học-logic (ALU-Arithmetic Logic Unit) Có chức năng thực hiện các lệnh của đơn vị điều khiển và xử lý tín hiệu. Theo tên gọi,đơn vị này dùng để thực hiện các phép tính số học(+,-,*,/)hay các phép tính logic(so sánh lớn hơn,nhỏ hơn...) Mô tả chức năng Chức năng cơ bản của máy tính là thực thi chương trình. Chương trình được thực thi gồm một dãy các chỉ thị được lưu trữ trong bộ nhớ. Đơn vị xử lý trung tâm(CPU) đảm nhận việc thực thi này. Quá trình thực thi chương trình gồm hai bước: CPU đọc chỉ thị từ bộ nhớ và thực thi chỉ thị đó. Việc thực thi chương trình là sự lặp đi lặp lại quá trình lấy chỉ thị và thực thi chỉ thị. Tốc độ Tốc độ xử lý của máy tính phụ thuộc vào tốc độ của CPU, nhưng nó cũng phụ thuộc vào các phần khác (như bộ nhớ trong, RAM, hay bo mạch đồ họa). Có nhiều công nghệ làm tăng tốc độ xử lý của CPU. Ví dụ công nghệ Core 2 Duo. Tốc độ CPU có liên hệ với tần số đồng hồ làm việc của nó (tính bằng các đơn vị như MHz, GHz, ...). Đối với các CPU cùng loại tần số này càng cao thì tốc độ xử lý càng tăng. Đối với CPU khác loại, thì điều này chưa chắc đã đúng; ví dụ CPU Core 2 Duo có tần số 2,6GHz có thể xử lý dữ liệu nhanh hơn CPU 3,4GHz một nhân. Tốc độ CPU còn phụ thuộc vào bộ nhớ đệm của nó, ví như Intel Core 2 Duo sử dụng chung cache L2 (shared cache) giúp cho tốc độ xử lý của hệ thống 2 nhân mới này nhanh hơn so với hệ thống 2 nhân thế hệ 1 ( Intel Core Duo và Intel Pentium D) với mỗi core từng cache L2 riêng biệt. (Bộ nhớ đệm dùng để lưu các lệnh hay dùng, giúp cho việc nhập dữ liệu xử lý nhanh hơn). Hiện nay công nghệ sản xuất CPU làm công nghệ 65nm. Hiện đã có loại CPU Quad-Core (4 nhân). Hãng AMD đã cho ra công nghệ gồm 2 bộ xử lý, mỗi bộ 2-4 nhân Phương thức sản xuất CPU Các CPU đều đươc chế tạo theo các bước dưới đây: 1.Thiết kế: Đây là bước các kiến trúc sư thiết kế chip, nghĩa là cách nó sẽ làm việc như thế nào.  2.Chế tạo đế sản xuất (wafer): Đây là quá trình chính trong việc sản xuất chip và chúng ta sẽ xem xét đến nó trong hướng dẫn này.  3.Chuẩn bị kiến khuôn rập: Bước này cơ bản gồm việc cắt các chip từ wafer  4.Đóng gói: Trong bước này, các thiết bị đầu cuối và phần chính được bổ sung vào chip  5.Kiểm tra: CPU được kiểm tra trước khi đem đi bán  Các nhà sản xuất Hai nhà sản xuất CPU lớn hiện nay là Intel và AMD. Một trong những CPU đầu tiên của hãng Intel là chip Intel 4004. Tung ra thị trường vào tháng 11 năm 1971, Intel 4004 có 2250 transistors và 16 chân. Một CPU của Intel năm 2006 là chiếc Intel Northwood P4, có 55 triệu transistors và 478 chân. Nhà sản xuất AMD (Advanced Micro Devices) cũng được đánh giá cao cho một số sản phẩm CPU của họ.  Chip máy tính được sản xuất như thế nào  Bạn đã từng bao giờ biết các chip như bộ vi xử lý, bộ xử lý video, bộ nhớ, chipset,… được sản xuất như thế nào chưa? Trong hướng dẫn này, chúng tôi sẽ giới thiệu các thông tin cần thiết để bạn có thể nắm được các kiến thức cơ bản về quá trình sản xuất chip như thế nào.  Quá trình chế tạo chất bán dẫn có thể được tóm tắt lại qua các bước như sau:  Thiết kế chip: Đây là bước các kiến trúc sư thiết kế chip, nghĩa là cách nó sẽ làm việc như thế nào.  Chế tạo đế chip (wafer): Đây là quá trình chính trong việc sản xuất chip và chúng ta sẽ xem xét đến nó trong hướng dẫn này.  Chuẩn bị kiến khuôn rập: Bước này cơ bản gồm việc cắt các chip từ wafer  Đóng gói: Trong bước này, các thiết bị đầu cuối và phần chính được bổ sung vào chip  Kiểm thử: Chip được kiểm tra trước khi đem đi bán.  Mỗi bước trong các bước trên lại được chia nhỏ hơn.  Khi nói “sản xuất chip” thì thường là chúng ta nghĩ về bước chế tạo, đây là bước phức tạp nhất. Và đây cũng là bước mà chúng tôi sẽ giải thích đến trong hướng dẫn này.  Quá trình chế tạo Wafer (đế chip) thô  Wafer là một đế mà các chip sẽ được xây dựng trên đó. Các wafer thô được sản xuất bằng silicon, thành phần hợp chất của cát biển. Chúng được tạo thông qua quá trình có tên gọi là Czochralski, ở đây một mẩu tinh thể silicon có cấu trúc hình que sau đó được nhúng vào trong silicon nóng chảy. Cấu trúc hình que này sẽ được kéo và quay đồng thời, tạo nên một mẩu hình trụ lớn của tinh thế silicon, mẩu tinh thể cỡ lớn này vẫn được biết đến là thỏi.  Thỏi được tạo ra trong quá trình này có kích thước cỡ dài từ 1 đến 2m và có thể có đường kích lên đến 300mm (đây chính là nguồn gốc của thuật ngữ 300-mm wafer mà chúng ta vẫn hay sử dụng ngày nay).  Thỏi được cắt mỏng để tạo các wafer thô  Một câu hỏi thường hay có ở đây là tại sao wafer lại có hình tròn mà không phải hình vuông. Câu trả lời cho điều này thật đơn giản. Lý do là thông qua quá trình Czochralski, thỏi này được tạo ra bằng cách kéo và quay đồng thời silicon nóng chảy, chính vì vậy hình dạng tự nhiên của tinh thể silicon được tạo ra trong quá trình này sẽ có hình tròn mà không phải là vuông.  Kỹ thuật in  Các chip được trên wafer thông qua quá trình có tên gọi là kỹ thuật in. Dưới quá trình này, các chất hóa học bị ảnh hưởng mạnh bởi ánh sáng bức xạ đã được sử dụng. Khi được lộ sáng các tia bức xạ này, chúng có thể trở thành mềm hoặc cứng. Chính vì vậy về cơ bản quá trình này gồm công đoạn khóa tia bức xạ cho các chất hóa học đã được áp dụng cho wafer bằng cách sử dụng các khuôn nền (hay mặt nạ đã được tạo bởi các kỹ sư), gỡ bỏ các thành phần mềm và sau đó lặp lại quá trình này lần nữa bằng một mặt nạ khác, quá trình này được thực hiện lặp lại cho tới khi nào chip được thực hiện xong.  Kỹ thuật in được thực hiện như thế nào  Rõ ràng mỗi mặt nạ lại có các mẫu khác nhau và chúng chính là cách các transistor và dây dẫn bên trong chip được chế tạo. Số mặt nạ được sử dụng cũng thay đổi phụ thuộc vào mỗi dự án nhất định. Ví dụ, các bộ vi xử lý Pentium 4 sử dụng đến 26 mặt nạ.  Chúng ta hãy xem xét chính xác quá trình này được thực hiện như thế nào.  Thứ đầu tiên được thực hiện đối với wafer thô là cấy silicon dioxide (SiO2) trên nó, cách thực hiện này bằng việc lộ sáng wafer với nhiệt độ và gas cực nóng. Việc cấy này cũng tương tự như cách gỉ sắt bám trên bề mặt kim loại khi lộ sáng wafer, tuy nhiên nó sẽ xảy ra nhanh hơn.  Tiếp theo wafer được tạo một loại vật chất có tên gọi là photoresist, đây là loại vật chất có thể bị hòa tan khi lộ sáng tia bức xạ. Mặt nạ đầu tiên được áp dụng và wafer được lộ sáng tia bức xạ. Phần mềm của photoresist được tách bằng một dung dịch và sau đó các thành phần của lớp silicon dioxide đã bị lộ sẽ được tách trong quá trình tách axit. Phần thừa của photoresist được tách bỏ, chính vì vậy lúc này chúng ta có wafer với lớp silicon dioxide có hình thù như mặt nạ đầu tiên.  Một lớp silicon dioxide khác tiếp tục được thực hiện trên wafer, lớn polysilicon được áp trên mặt trên của nó và sau đó một lớp photoresist khác được thực hiện tiếp trên chúng. Mặt nạ thứ hai được thực hiện và wafer được lộ sáng tia bức xạ lần thứ hai. Phần photoresist mềm được tách bỏ bằng dung dịch và sau đó các phần của polysilicon và lớp silicon dioxide đã được lộ sáng bị tách bới axit. Phần dư thừa của photoresist được tách bỏ và lúc này chúng ta có wafer với lớp silicon dioxide có khuôn hình như mặt nạ đầu tiên và phần trên của nó là một polysilicon và các lớp silicon dioxide có khuôn hình của mặt nạ thứ hai.  Sau hai bước này, một quá trình có tên gọi doping (hay còn gọi là sự ion hóa) sẽ diễn ra. Ở đây các vùng đã được lộ sáng của wafer được in đậm bằng các biểu tượng khác nhau, mục đích để thay đổi đường các vùng lộ sáng dẫn điện. Các vùng lộ sáng sẽ được biến đổi thành chất bán dẫn loại P (cực dương) hoặc bán dẫn kiểu N (cực âm), phụ thuộc vào các chất hóa học đã được sử dụng: Phốt pho, Atimom và thạch tín là các chất điển hình vẫn được sử dụng để tạo lớp bán dẫn N, còn Bo, Indi và Gali được sử dụng để tạo các lớp bán dẫn P. Việc sắp xếp các lớp bán dẫn này sẽ tạo nên các transistor PNP hoặc NPN.  Việc tạo lớp và dùng mặt nạ được lặp lại nhiều lần sau layout của mặt nạ kế tiếp. Một kim loại sau đó sẽ được ép vào wafer, lấp đầy các lỗ đã được hình thành để tạo kết nối giữa các lớp với nhau. Các quá trình sử dụng mặt nạ và tách axit sẽ được thực hiện để bổ sung thêm các kết nối điện.  Quá trình này được lặp lại nhiều lần cho tới khi chip được thực hiện xong, nghĩa là các mặt nạ đã được sử dụng hết. Quá trình sản xuất và số các lớp phụ thuộc vào thành phần được sản xuất. Ví dụ với bộ vi xử lý Pentium 4 thì chúng đã sử dụng 26 mặt nạ và 7 lớp kim loại.  Các transistor được xây dựng bên trong chip và kết nối kim loại giữa chúng Wafer trong bộ vi xử lý Pentium 4 sau khi được sản xuất  Các chip trên wafer sau khi được kiểm thử và wafer được gửi đến bước tiếp theo trong quá trình sản xuất, trong bước này các chip sẽ được cắt wafer, có các thành phần đầu cuối của chúng gắn kèm và được đóng gói.  Sau đó chúng sẽ được mang ra test thử, đóng nhãn hiệu và bán.  Tất cả quá trình mô tả ở trên xảy ra bên trong một phòng có tên gọi là “clean room”. Bạn có thể đã từng nhìn thấy một số bức tranh của những người đang làm việc trong phòng này với những bộ quần áo đặc biệt có tên gọi là “bộ đồ con thỏ”.  Bộ đồ con thỏ trong clean room Do chúng ta đang sản xuất các transistor siêu nhỏ chính vì vậy chỉ cần một hành động làm bẩn nhỏ cũng có thể gây hư hỏng chip, bạn có thể xem các ví dụ trong hình

Một chút vệ sinh bẩn cũng có thể làm hỏng chip bài của Văn Linh (Theo Hardwaresecrets)

CPU Intel Lịch sử CPU Intel BXL 4bit 4004 là BXL đầu tiên được Intel giới thiệu vào tháng 11 năm 1971, sử dụng trong máy tính (calculator) của Busicom. 4004 có tốc độ 740KHz, khả năng xử lý 0,06 triệu lệnh mỗi giây (milion instructions per second - MIPS); được sản xuất trên công nghệ 10 µm, có 2.300 transistor (bóng bán dẫn), bộ nhớ mở rộng đến 640 byte. 4040, phiên bản cải tiến của 4004 được giới thiệu vào năm 1974, có 3.000 transistor, tốc độ từ 500 KHz đến 740KHz. BXL 8bit 8008 (năm 1972) được sử dụng trong thiết bị đầu cuối Datapoint 2200 của Computer Terminal Corporation (CTC). 8008 có tốc độ 200kHz, sản xuất trên công nghệ 10 µm, với 3.500 transistor, bộ nhớ mở rộng đến 16KB. 8080 (năm 1974) sử dụng trong máy tính Altair 8800, có tốc độ gấp 10 lần 8008 (2MHz), sản xuất trên công nghệ 6 µm, khả năng xử lý 0,64 MIPS với 6.000 transistor, có 8 bit bus dữ liệu và 16 bit bus địa chỉ, bộ nhớ mở rộng tới 64KB.

8085 (năm 1976) sử dụng trong Toledo scale và những thiết bị điều khiển ngoại vi. 8085 có tốc độ 2MHz, sản xuất trên công nghệ 3 µm, với 6.500 transistor, có 8 bit bus dữ liệu và 16 bit bus địa chỉ, bộ nhớ mở rộng 64KB. BXL 16bit 8086 xuất hiện tháng 6 năm 1978, sử dụng trong những thiết bị tính toán di động. 8086 được sản xuất trên công nghệ 3 µm, với 29.000 transistor, có 16 bit bus dữ liệu và 20 bit bus địa chỉ, bộ nhớ mở rộng 1MB. Các phiên bản của 8086 gồm 5, 8 và 10 MHz. 8088 trình làng vào tháng 6 năm 1979, là BXL được IBM chọn đưa vào chiếc máy tính (PC) đầu tiên của mình; điều này cũng giúp Intel trở thành nhà sản xuất BXL máy tính lớn nhất trên thế giới. 8088 giống hệt 8086 nhưng có khả năng quản lý địa chỉ dòng lệnh. 8088 cũng sử dụng công nghệ 3 µm, 29.000 transistor, kiến trúc 16 bit bên trong và 8 bit bus dữ liệu ngoài, 20 bit bus địa chỉ, bộ nhớ mở rộng tới 1MB. Các phiên bản của 8088 gồm 5 MHz và 8 MHz. 80186 (năm 1982) còn gọi là iAPX 186. Sử dụng chủ yếu trong những ứng dụng nhúng, bộ điều khiển thiết bị đầu cuối.

Các phiên bản của 80186 gồm 10 và 12 MHz. 80286 (năm 1982) được biết đến với tên gọi 286, là BXL đầu tiên của Intel có thể chạy được tất cả ứng dụng viết cho các BXL trước đó, được dùng trong PC của IBM và các PC tương thích. 286 có 2 chế độ hoạt động:  chế độ thực (real mode) với chương trình DOS theo chế độ mô phỏng 8086 và không thể sử dụng quá 1 MB RAM; chế độ bảo vệ (protect mode) gia tăng tính năng của bộ vi xử lý, có thể truy xuất đến 16 MB bộ nhớ. 286 sử dụng công nghệ 1,5 µm, 134.000 transistor, bộ nhớ mở rộng tới 16 MB. Các phiên bản của 286 gồm 6, 8, 10, 12,5, 16, 20 và 25MHz. BXL 32bit vi kiến trúc NetBurst (NetBurst MICRO-ARCHITECTURE) Intel386 gồm các họ 386DX, 386SX và 386SL.

Intel386DX là BXL 32 bit đầu tiên Intel giới thiệu vào năm 1985, được dùng trong các PC của IBM và PC tương thích. Intel386 là một bước nhảy vọt so với các BXL trước đó. Đây là BXL 32 bit có khả năng xử lý đa nhiệm, nó có thể chạy nhiều chương trình khác nhau cùng một thời điểm. 386 sử dụng các thanh ghi 32 bit, có thể truyền 32 bit dữ liệu cùng lúc trên bus dữ liệu và dùng 32 bit để xác định địa chỉ. Cũng như BXL 80286, 80386 hoạt động ở 2 chế độ: real mode và protect mode. 386DX sử dụng công nghệ 1,5 µm, 275.000 transistor, bộ nhớ mở rộng tới 4GB.

Các phiên bản của 386DX gồm 16, 20, 25 và 33 MHz (công nghệ 1 µm).  386SX (năm1988) sử dụng công nghệ 1,5 µm, 275.000 transistor, kiến trúc 32 bit bên trong, 16 bit bus dữ liệu ngoài, 24 bit bus địa chỉ, bộ nhớ mở rộng 16MB; gồm các phiên bản 16, 20, 25 và 33 MHz. 386SL (năm1990) được thiết kế cho thiết bị di động, sử dụng công nghệ 1 µm, 855.000 transistor, bộ nhớ mở rộng 4GB; gồm các phiên bản 16, 20, 25 MHz. 486DX ra đời năm 1989 với cấu trúc bus dữ liệu 32 bit. 486DX có bộ nhớ sơ cấp (L1 cache) 8 KB để giảm thời gian chờ dữ liệu từ bộ nhớ đưa đến, bộ đồng xử lý toán học được tích hợp bên trong.

Ngoài ra, 486DX được thiết kế hàng lệnh (pipeline), có thể xử lý một chỉ lệnh trong một xung nhịp. 486DX sử dụng công nghệ 1 µm, 1,2 triệu transistor, bộ nhớ mở rộng 4GB; gồm các phiên bản 25 MHz, 35 MHz và 50 MHz (0,8 µm). 486SX (năm 1991) dùng trong dòng máy tính cấp thấp, có thiết kế giống hệ 486DX nhưng không tích hợp bộ đồng xử lý toán học. 486DX sử dụng công nghệ 1 µm (1,2 triệu transistor) và 0,8 µm (0,9 triệu transistor), bộ nhớ mở rộng 4GB; gồm các phiên bản 16, 20, 25, 33 MHz. 486SL (năm 1992) là BXL đầu tiên dành cho máy tính xách tay (MTXT), sử dụng công nghệ 0,8 µm, 1,4 triệu transistor, bộ nhớ mở rộng 4GB; gồm các phiên bản 20, 25 và 33 MHz.

Intel Pentium, BXL thế hệ kế tiếp 486 ra đời năm 1993. Cải tiến lớn nhất của Pentium là thiết kế hai hàng lệnh (pipeline), dữ liệu bên trong có khả năng thực hiện hai chỉ lệnh trong một chu kỳ, do đó Pentium có thể xử lý chỉ lệnh nhiều gấp đôi so với 80486 DX trong cùng thời gian. Bộ nhớ sơ cấp 16KB gồm 8 KB chứa dữ liệu và 8 KB khác để chứa lệnh. Bộ đồng xử lý toán học được cải tiến giúp tăng khả năng tính toán đối với các trình ứng dụng.

Pentium sử dụng công nghệ 0,8 µm chứa 3,1 triệu transistor, có các tốc độ 60, 66 MHz (socket 4 273 chân, PGA). Các phiên bản 75, 90, 100, 120 MHz sử dụng công nghệ 0,6 µm chứa 3,3 triệu transistor (socket 7, PGA). Phiên bản 133, 150, 166, 200 sử dụng công nghệ 0,35 µm chứa 3,3 triệu transistor (socket 7, PGA) Pentium MMX (năm 1996), phiên bản cải tiến của Pentium với công nghệ MMX được Intel phát triển để đáp ứng nhu cầu về ứng dụng đa phương tiện và truyền thông. MMX kết hợp với SIMD (Single Instruction Multiple Data) cho phép xử lý nhiều dữ liệu trong cùng chỉ lệnh, làm tăng khả năng xử lý trong các tác vụ đồ họa, đa phương tiện.

Pentium MMX sử dụng công nghệ 0,35 µm chứa 4,5 triệu transistor, có các tốc độ 166, 200, 233 MHz (Socket 7, PGA). Pentium Pro. Nối tiếp sự thành công của dòng Pentium, Pentium Pro được Intel giới thiệu vào tháng 9 năm 1995, sử dụng công nghệ 0,6 và 0,35 µm chứa 5,5 triệu transistor, socket 8 387 chân, Dual SPGA, hỗ trợ bộ nhớ RAM tối đa 4GB. Điểm nổi bật của Pentium Pro là bus hệ thống 60 hoặc 66MHz, bộ nhớ đệm L2 (cache L2) 256KB hoặc 512KB (trong một số phiên bản). Pentium Pro có các tốc độ 150, 166, 180, 200 MHz.

Pentium II (năm 1997), phiên bản cải tiến từ Pentium Pro được sử dụng trong những dòng máy tính cao cấp, máy trạm (workstation) hoặc máy chủ (server).

Pentium II có bộ nhớ đệm L1 32KB, L2 512KB, tích hợp công nghệ MMX được cải tiến giúp việc xử lý dữ liệu video, audio và đồ họa hiệu quả hơn. Pentium II có đế cắm dạng khe - Single-Edge contact (SEC) 242 chân, còn gọi là Slot 1. BXL Pentium II BXL Pentium II đầu tiên, tên mã Klamath, sản xuất trên công nghệ 0,35 µm, có 7,5 triệu transistor, bus hệ thống 66 MHz, gồm các phiên bản 233, 266, 300MHz.

Pentium II, tên mã Deschutes, sử dụng công nghệ 0,25 µm, 7,5 triệu transistor, gồm các phiên bản 333MHz (bus hệ thống 66MHz), 350, 400, 450 MHz (bus hệ thống 100MHz). Celeron (năm 1998) được “rút gọn” từ kiến trúc BXL Pentium II, dành cho dòng máy cấp thấp. Phiên bản đầu tiên, tên mã Covington không có bộ nhớ đệm L2 nên tốc độ xử lý khá chậm, không gây được ấn tượng với người dùng. Phiên bản sau, tên mã Mendocino, đã khắc phục khuyết điểm này với bộ nhớ đệm L2 128KB. Covington sử dụng công nghệ 0,25 µm, 7,5 triệu transistor, bộ nhớ đệm L1 32KB, bus hệ thống 66MHz, đế cắm 242 chân Slot 1 SEPP (Single Edge Processor Package), tốc độ 266, 300 MHz. Mendocino cũng sử dụng công nghệ 0,25 µm có đến 19 triệu transistor, bộ nhớ đệm L1 32KB, L2 128KB, bus hệ thống 66 MHz, đế cắm Slot 1 SEPP hoặc socket 370 PPGA, tốc độ 300, 333, 366, 400, 433, 466, 500, 533 MHz.

Đăng nhập

Chat